Associative Transcriptomics workshop

Part Two

Andrea Harper, Zhesi He

Interpreting Results

SNP and GEM results look similar

- You will find that the results outputted by GAPIT (SNPs) and Regress (GEMs) look quite similar
- Both will include results tables, QQ Plots and Manhattan Plots
- GAPIT also produces some additional files

We will first look at the raw results tables...

QQ Plots

QQ-Plots are used to evaluate fit to model

More complex SNP model controls false positives more effectively than simpler GEM model

More complex SNP model controls false positives more effectively than simpler GEM model

in GEM analysis

Correction for genomic inflation is a rough tool – use alongside Manhattan plots

Correction for genomic inflation is a rough tool – use alongside Manhattan plots

Association test results files

SNP results file

Adjusted p-values

-log10 adjusted p-values

GEM results file

Adjusted p-values

-log10 adjusted p-values

Multiple Test Correction

- Both SNP and GEM associations include many individual statistical tests
- In general, if we perform x tests, what is the chance of seeing at least 1 false positive?

```
P(making an error) = \alpha

P(not making an error) = 1 - \alpha

P(not making an error in x tests) = (1 - \alpha)^x

P(making at least one error in x tests) = 1 - (1-\alpha)^x
```

• So, if we have a significance threshold of 0.05, and we do 20 tests...

$$P = 1 - (1 - 0.05)^{20} = 0.64$$

This number rises with the number of tests, 100 tests...

$$P = 1 - (1 - 0.05)100 = 0.994$$

Multiple Test Correction

- So, you will have false positives, and lots of them!
- Multiple test correction must be used to reduce the chance of picking up false positives
- There are two main ways to do this:
 - 1. Bonferroni correction This changes the p-value significance threshold to make it more stringent, based on the number of tests you have done
 - 2. False Discovery Rate Adjustment (FDR)— This adjusts each p-value resulting from your statistical tests to correct for the expected rate of false positives

1. Bonferroni correction

- This is the simplest and quickest approach, but also the most stringent
- Because of this, it can mean that all your results become nonsignificant!
- However, as a result, if you do have p-values that pass the Bonferroni correction, they are extremely robust results!

1. Bonferroni correction

- To calculate a Bonferroni-corrected significance threshold, simply divide your usual threshold (usually 0.05) by the number of tests you have done (ie. total number of SNPs/GEMs or rows in the results file)
- $\alpha_{adj} = 0.05/5000 = 0.00001$
- So now only p-values below this threshold will be deemed significant
- As p-values are transformed using –log10 for plotting, we can also transform this threshold (ie. –log10P(α_{adi}) = 5)

2. False Discovery Rate Adjustment (FDR)

- FDR treats every statistical result individually, and is less stringent than Bonferroni
- This makes it useful when no p-values are significant under more stringent corrections ie. (Bonferroni)
- It takes into account the the number of tests, the p-value of each individual test, and their overall ranking in the total set of tests

2. False Discovery Rate Adjustment (FDR)

- FDR adjusted p-values:
 - 1. P-value of each gene ranked in order from the smallest to the largest.
 - 2. Largest p-value multiplied by the number of genes in test.
 - The remaining p-values are multiplied by the total number of markers divided by their rank positions

Rank	Gene	P value	Correction
1	А	0.0005 ***	0.0005 x (6/1) = 0.003 **
2	В	0.004 **	0.004 x (6/2) = 0.012 *
3	С	0.01 **	0.01 x (6/3) = 0.02 *
4	D	0.02 *	0.02 * (6/4) = 0.03 *
5	E	0.045 *	0.04 x (6/5) = 0.054 (NS)
6	F	0.08 (NS)	0.08 x 6 = 0.48 (NS)

GEMs

R2 test statistic – How well the model fits the data (proportion variance) Intercept GEM results file

Enables you to predict trait values based on **RPKM**

Gradient

SNPs

Broad sense heritability H²

SNP allele effects

- Having identified significant SNPs, you can see how much of an effect they have on the trait in the "Allele Effect Estimates" file
- Allele effects are presented in the same units as the trait file
- Each SNP is assigned an Allele Effect with respect to the nucleotide that is second in alphabetical order. For example, if the nucleotides at a SNP are "A" and "T", then a positive allelic effect indicates that "T" is favourable

SNP alleles

- To make finding the SNP alleles easy, we have provided a file for download called "PORlindia_SNP_alleleTable.xlsx"
- Taking the top SNP in this alpha tocopherols example:

- The top SNP has C and T alleles
- The T allele is estimated to have a positive effect on the trait of 6.1 mg kg⁻¹

A note on allele effects

- Most complex traits are additive
- This means that many loci contribute to the phenotype
- Allele effects estimates are the total effect of all additive loci contributing to the trait
- So, if you select several SNPs as markers, don't expect their effect to be the sum of the estimated allele effects

Manhattan Plots

Interpreting Manhattan Plots

 Manhattan Plots may look similar for SNP and GEM results, but they should be interpreted in different ways

Theory suggests that we should see multiple SNPs within a block of linkage disequilibrium, so we should only consider **markers in peaks**, not single points on their own!

The candidate gene/s could be anywhere within the peak (but usually closest to the top markers)

SNPs

Peak on A2 should be closest to the top gene

For GEMs, peaks mean changes to expression of several genes, often due to being in *cis* with a deletion, rearrangement etc. Candidate gene could be anywhere within peak

Individual points may also be candidate genes that are subject to *trans*-regulation

Identifying candidates in peak regions

GlobalAB.xlsx is available for download
Use it to look at regions surrounding significant markers

Co-localised marker associations

Looking at both SNP and GEM plots can be useful

Co-localised peaks suggest sequence variation is affecting expression of genes in *cis* with it

Width of expression peak suggests genomic extent of this effect

It is possible to have multiple genes potentially affecting the TOI in these regions